Simultaneous Phosphorescence and Fluorescence Lifetime Imaging by Multi-Dimensional TCSPC and Multi-Pulse Excitation.
نویسندگان
چکیده
TCSPC FLIM/PLIM is based on a multi-dimensional time-correlated single-photon counting process. The sample is scanned by a high-frequency-pulsed laser beam which is additionally modulated on/off synchronously with the pixels of the scan. FLIM is obtained by building up the distribution of the photons over the scanning coordinates and the times of the photons in the excitation pulse sequence, PLIM is obtained by building up the photon distribution over the scanning coordinates and the photon times in the modulation period. FLIM and PLIM data are thus obtained simultaneously within the same imaging process. Since the technique uses not only one but many excitation pulses for every phosphorescence signal period the sensitivity is much higher than for techniques that excite with a single pulse only. TCSPC FLIM/PLIM works both with one-photon and two-photon excitation, does not require a reduction of the laser pulse repetition rate by a pulse picker, and eliminates the need of high pulse energy for phosphorescence excitation.
منابع مشابه
Spatially Resolved Recording of Fluorescence-Lifetime Transients by Line- Scanning TCSPC
We present a technique that records transient effects in the fluorescence lifetime of a sample with spatial resolution along a one-dimensional scan. The technique is based on building up a photon distribution over the distance along the scan, the arrival times of the photons after the excitation pulses, and the experiment time after a stimulation of the sample. The maximum resolution at which l...
متن کاملSimultaneous Fluorescence and Phosphorescence Lifetime Imaging Microscopy in Living Cells
In living cells, there are always a plethora of processes taking place at the same time. Their precise regulation is the basis of cellular functions, since small failures can lead to severe dysfunctions. For a comprehensive understanding of intracellular homeostasis, simultaneous multiparameter detection is a versatile tool for revealing the spatial and temporal interactions of intracellular pa...
متن کاملHigh resolution TCSPC lifetime imaging
Time-correlated single photon counting (TCSPC) fluorescence lifetime imaging in laser scanning microscopes can be combined with a multi-detector technique that allows to record time-resolved images in several wavelength channels simultaneously. The technique is based on a multi-dimensional histogramming process that records the photon density versus the time within the fluorescence decay functi...
متن کاملAn 8-Channel Parallel Multispectral TCSPC FLIM System
We describe a TCSPC FLIM system that uses 8 parallel TCSPC channels to record FLIM data at a peak count rate on the order of 50⋅10 s. By using a polychromator for spectral dispersion and a multi-channel PMT for detection we obtain multi-spectral FLIM data at acquisition times on the order of one second. We demonstrate the system for recording transient lifetime effects in the chloroplasts in li...
متن کامل3D-resolved fluorescence and phosphorescence lifetime imaging using temporal focusing wide-field two-photon excitation.
Fluorescence and phosphorescence lifetime imaging are powerful techniques for studying intracellular protein interactions and for diagnosing tissue pathophysiology. While lifetime-resolved microscopy has long been in the repertoire of the biophotonics community, current implementations fall short in terms of simultaneously providing 3D resolution, high throughput, and good tissue penetration. T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Advances in experimental medicine and biology
دوره 1035 شماره
صفحات -
تاریخ انتشار 2017